-8b*12^.4b=-40

Simple and best practice solution for -8b*12^.4b=-40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8b*12^.4b=-40 equation:



-8b*12^.4b=-40
We move all terms to the left:
-8b*12^.4b-(-40)=0
We add all the numbers together, and all the variables
-8b*12^.4b+40=0
Wy multiply elements
-96b^2+40=0
a = -96; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-96)·40
Δ = 15360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15360}=\sqrt{1024*15}=\sqrt{1024}*\sqrt{15}=32\sqrt{15}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{15}}{2*-96}=\frac{0-32\sqrt{15}}{-192} =-\frac{32\sqrt{15}}{-192} =-\frac{\sqrt{15}}{-6} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{15}}{2*-96}=\frac{0+32\sqrt{15}}{-192} =\frac{32\sqrt{15}}{-192} =\frac{\sqrt{15}}{-6} $

See similar equations:

| x²+6x=-41 | | n²+601n-16200=0 | | x2+6x=-41 | | x2+6x=41 | | (x+3)²=(x–4)²+7 | | x2+6x+41=0 | |  x=–1 | |   x=–5 | | 5-2(x-6)=10-7(x-1) | | (x–2)(x+2)=(x–1)² | | 2x(x-1)(x+3)(x-6)=0 | | 4x-+3x=-4+2+-7 | | 56t+29=4t+2 | | 3x÷4=-9 | | 3(x+2)(x+6)=0 | | x-(x+1)+2*(3x-1)=2(x+1)-2 | | 12-2x=5x-1 | | 15xx=-23 | | x–(x+1)+2·(3x–1)=2(x+1)–2 | | 2-(3x+1)+4x=x+1 | | +14x=+13x | | 3(2x+1)-(x-5)=2x-1 | | 3-7*3+4x=-18 | | 5x+0,5=-0,7 | | -5y+12=-8 | | n/5+6=16 | | 3(x-2)=6(2x-5) | | -(-4x)+(20+4x)=4 | | (9x+64=4x-68) | | 3•x+25=55 | | 5(x+4)-3x=2(x+7) | | 4,2+2t=-3,8 |

Equations solver categories